Statistical Modeling of Nanotechnology Knowledge Diffusion Networks
نویسندگان
چکیده
Nanotechnology is crucial for industrial and scientific advancement, with millions of dollars being invested each year in nanotechnology-related research. Recent developments in information-technology enables modeling the knowledge diffusion process via online depositories of nanotechnology-related scientific publication records. Understanding the mechanism may help funding agencies use their funding effectively. This study uses Exponential Random Graph Models (ERGMs), a family of theorygrounded statistical models, to explore the knowledge diffusion patterns among nanotechnology researchers. We systematically evaluate how various attributes of researchers and public funding affect the knowledge diffusion processes. Results show that the impact of public funding on nanotechnology knowledge transfer has been increasing in recent years. Funding all kinds of researchers can stimulate knowledge transfer. Also, funding senior researchers help stimulate knowledge sharing. Our analysis framework of knowledge diffusion networks is effective in studying the knowledge diffusion patterns in nanotechnology, and can be easily applied to other fields.
منابع مشابه
STATISTICAL MODELING OF MULTI-DIMENSIONAL KNOWLEDGE DIFFUSION NETWORKS: AN ERGM-BASED FRAMEWORK by
متن کامل
A Knowledge Management Approach to Discovering Influential Users in Social Media
A key step for success of marketer is to discover influential users who diffuse information and their followers have interest to this information and increase to diffuse information on social media. They can reduce the cost of advertising, increase sales and maximize diffusion of information. A key problem is how to precisely identify the most influential users on social networks. In this pape...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملA Statistical-Physical Model of Interference in Diffusion-Based Molecular Nanonetworks
Molecular nanonetworks stand at the intersection of nanotechnology, biotechnology, and network engineering. The research on molecular nanonetworks proposes the interconnection of nanomachines through molecule exchange. Amongst different solutions for the transport of molecules between nanomachines, the most general is based on free diffusion. The objective of this paper is to provide a statisti...
متن کاملA Statistical Study of two Diffusion Processes on Torus and Their Applications
Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...
متن کامل